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ENERGY B A L A N C E  IN THE D I S C H A R G E  
C I R C U I T  O F  A N  E L E C T R I C - D I S C H A R G E  L A S E R  

B. A. Barikhin *) and Yu. I. Kryshalovich UDC 533.9.082.715+681.7.069.24 

The possibili~ o f  using transient processes in the discharge circuit of  an electric-discharge laser to 
pump the active media is analyzed. It is shown that, due to the nonlinearity of  the transient process, 
under certain conditions, the efficiency of  the energy contribution to the alternate load can almost be 
doubled as compared with the circuit containing a permanent load. It has been established that the 
process is quasiperiodic when the discharge-plasma resistance changes by an exponential law. The 
conditions o f  realization of  the maximum energy contribution as well as the regions o f  stabilization o f  
the optimum parameters have been determined. The necessa~ calculations have been performed for  
active media that model solutions of organic dyes under excitation by flashlamps. 

Generated radiation losses in a dye laser have been studied in sufficient detail [ 1-4]. However, the high 
energy output of  organic-dye lasers is provided predominantly by the high energy release in the pumping 
source. Because of this, the pumping source must meet a number of  exacting requirements, the main of  which, 
including alternative requirements, can be determined at the qualitative-analysis level. This does not mean that 
there is no way of performing the corresponding quantitative estimations and calculations - they will add noth- 
ing to the results of the qualitative analysis. At the same time, the efficiency of qualitative estimates is appar- 
ent and makes it possible to work out concrete recommendations,  for designing pumping sources for  
organic-dye lasers with a high output energy. 

A conventional electric-discharge laser represents a discharge circuit containing an electric (magnetic) 
energy storage, a controlled high-voltage commutator, a current line, and a resistive load that are connected in 
series. The main functional requirement imposed on the power source of the laser module is the possibility of 
maneuvering rapidly the portion of the energy stored in the energy storage, which is released in the load, and 
the pulse duration, within which this energy is released. In this case, account must be taken of  the special 
properties of the process of excitation in organic-dye lasers that manifest themselves in an increase in the in- 
duced losses in the active medium of these lasers incomparably larger than that in other lasers, which can 
cause the suppression of  oscillations even at the leading edge of the pumping pulse [4]. Because of this, for 
organic-dye lasers, as distinguished from other lasers, of  importance is not the value of the pumping energy 
integral over the pulse but its portion that is released during the leading edge of  the pumping pulse. Conse- 
quently, the problem of  optimization of the parameters of the power source of  an organic-dye laser is the 
achievement, first, of  the maximum energy released in the load at the leading edge of the pumping pulse and, 
second, of the minimum duration of the leading edge. For a bank of capacitors, the pulse power is determined 
by the working voltage U0 of the power source and the electric capacity Ce of the storage. In the discharge 
circuit, the pulse duration can be changed in two ways: through the sectionalization of the capacity storage and 
by changing the wave resistance of the current line in each section. Thus, the energy We = CeU~/2 can be 
stored in the capacity storage. The condition of the maximum release of the stored energy in the load is pro- 
vided by the balance of  the electrical resistance of the load Rc and the wave resistance of the circuit Pc = 
~ c / C c .  Usually, for fast circuits with large values of the stored energy [5, 6] the active resistance of  the 
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storage R e << Rc, the capacity of the circuit Cc << Ce, and the inductances of the storage Le and of the dis- 
charge circuit Lc are of the same order. 

A discharge of the capacitor bank in the resistive load represents a transient process in the discharge 
circuit, which is described by the equation 

, )  

d"Ucond dUcona 
dx 2 + D  c(x) dx +Ucona=0,  (1) 

where Ucond ---- Ucond(t)/Uo is the dimensionless voltage across the capacitor bank expressed in terms of the in- 
stantaneous U(t) and working U0 voltages; x = o-~0t is the dimensionless time expressed in terms of the fre- 
quency of oscillations of the unloaded circuit COo = (LcCc)-1/2; Dc(x) = Rc(t) = Rc(t)/pc is the discharge-circuit 
damping expressed in terms of the variable electrical resistance of the load Rc(t) and the wave resistance of the 
circuit Pc. The Q-factor of the discharge circuit is related to the damping by the known relation Qc = 1~De. 
For circuits with a steady damping it is convenient to introduce the notation d = Rc/2pc = const and to write 
Eq. (1) in the form 

d-uc°na + 2d duc°nd 0 (2) 
d x  2 d x  + Uc°nd  = " 

It is more informative to perform analysis of the energy balance in the transient process with the use 
of dimensionless quantities: 

a) strength of current in the discharge circuit Jc(x) = ducond(X)/dx = ic(t)/U0/Pc expressed in terms of 
the dimensional quantity it(t); 

b) instantaneous power of the heat release in the active resistance of the load 

( ~ . ~ )  - Rc(t) ic(t) 
Pc (x) = D c (x) U()/Pc 

c) e n e r g y  r e l eased  in the f o r m  o f  heat  in the  a c t i v e  res i s t ance  by the t ime t, Wc(X) = 
x 2 t 

e {ducond ~ f 2J D c ( v ) | ~ | d y =  J Rc(t)ic(t)dt/CeU~/2 expressed in terms of the energy stored in the storage We. 

o 
k- - J  ) 

0 

The properties of the analytical solution of Eq. (2) are well known, in particular, the energy release in 
the load, integral over the pulse duration, attains the maximum value and is performed in a minimum time 
interval under the critical discharge condition d = 1. In designing power sources for solid-state lasers, the 
steady-state condition of an aperiodic process is usually taken as the operating condition, since to pump these 
lasers it is necessary to form a discharge plasma with a low brightness temperature Tb < 5-103 K in pulses of 
duration of -1 lasec that have a nearly rectangular shape [7]. In this case, the condition d > 10 must be fulfilled 
with good accuracy. However, the analogous requirement imposed on the pumping source of an organic-dye 
laser is different and is determined by the nonlinearity of  the driving-pulse leading-edge rise. In this connec- 
tion, the energy release in the load, integral over the time of leading-edge rise to the maximum Xm = 1.24, 
attains the maximum value w m = 0.40 of the stored energy at the maximum value of  the discharge-current 
strength im= --0.57 in the damped oscillation regime for d = 0.44. The preceding is completely supported by 
the graphs in Fig. 1, in which the dependences of the time Xm (curve 1) of attainment of  the maximum im of 
the discharge-current strength (curve 2), and of the energy of heat release in the load Wm (curve 3) on the 
damping are presented. 

In electric-discharge lasers, the electrical resistance of  the electric-discharge plasma Rc(t ) that, after 
plasma formation, decreases with increase in the discharge-current strength, i.e., as the plasma warms up, 
serves as the load. Consequently, the general solution of  Eq. (1) for an organic-dye laser is completely deter- 
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Fig. 1. Dependence of the time of attainment of the discharge-current 
strength maximum Xm (1), of the maximum value of the discharge-current 
strength (2), and of the energy released in the load by the time Xm (3) on 
the damping in the case of  a permanent load. 

Fig. 2. Time dependence of the discharge-current strength in the case of  
an alternate load at d = 1.6 and different values of y: 1) y = 0.5; 2) l;  3) 
1.5; 4) 2; 5) 2.5. 
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mined by the form of the function Dc(x). In particular, for De(x) = l / x  it is the Bessel equation of zero order. 
Because of this, in the case of such damping, the heat release in the load is described by the Bessel function 
of the first order that is quasiperiodic in character. The voltage across the capacitor bank and the strength of 
current in the circuit must be different in sign. When the damping occurs by the exponential law Dc(x) - l / x :  
at y = O, the general character of evolution of the transient-process parameters must be retained [8], i.e., the 
general solution of (1) remains quasiperiodic, the zeros of the solution must be spaced almost evenly and, in 
the limit x ~ oo, the intervals between them must approach ~. Indeed, as the data of the numerical calculation 
presented by the curves in Fig. 2 show, for the values 0.5 < 7< 2.5 the discharge-current strength it(t) is almost 
periodic in time, i.e., the discharge is essentially quasiperiodic in character. For convenience of comparison 
with the parameters of the steady damping, the function De(x) is selected in the form D(x)  = d(xm/x)  ~. In the 
discharge circuit with a variable damping, the time of attainment of the first maximum of the current Xm is 
practically independent of the exponent 7 up to d-~ 2, which corresponds to the condition D(x)  = l / x ,  as the 
data of the numerical solution of Eq. (1), given in Fig. 3a, show. The maximum value of the current strength 
im ceases to depend on d beginning with 7 = 1.6, as the data of the numerical solution of  (1), presented in Fig. 
3b, show. Correspondingly, as is seen from Fig. 3c, the values of the energy released in the load by this time 
form a plateau on the surface win(d; it) =0.65 in the ranges 2 < d  and 1.1 < 7 <  1.6. So high a value of the 
portion of the stored energy,' released in the load at the leading edge of the pumping pulse, is due to the non- 
linearity of  the transient process in the discharge circuit, which, in turn, is determined by the nonlinearity of 
the equation of  discharge-plasma state. It should be noted that if the discharge current is quasiperiodic, as in 
Fig. 2, in the case where the plasma is cooled at the trailing edge of the current pulse, the equation of its state 
has a distinctly different form because of the irreversibility of the processes of heating and relaxation in the 
finite volume. Consequently, the damping in Eq. (1) will be described by a function that, in the general case, 
is distinct from the exponential function. Thus, the analysis performed is true only for the load representing an 
electric-discharge plasma whose resistance decreases at the leading edge of the discharge-current pulse. At the 
same time, the appearance of the maximum on the curve win(d) (curve 3) in Fig. 1 obtained for the damped 
oscillation regime of discharge in the case of a steady load indicates that this energy redistribution is a charac- 
teristic property of the transient process and is due to the nonlinearity of  this process. 
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Fig. 3. Dependence of the time of  attainment of the first maximum of the 
discharge-current strength (a), of  the maximum value of the discharge-cur- 
rent strength (b), and of the energy released in the load by the time Xm (c) 
on the damping d and the exponent T in the case of  an alternate load. 
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Fig. 4. Oscillogram of the discharge-current pulse (curve 1) and the elec- 
trical resistance of  the discharge plasma (curve 2) calculated from the 
measured values of  the current strength and voltage across the resistive 
load. The scale multiplier along the time axis is 10 lasec. R, f~; t, gsec. 

It should be particularly emphasized that in the analysis performed the plasma was assumed to be ho- 
mogeneous, i.e., at every instant the conduction was the same throughout its volume. In the case of contraction 
of the discharge, the damping in every breakdown channel must be taken into account in its own right. When 

the process develops in an avalanche-type manner the damping in an individual channel decreases practically 
exponentially. Since the process of  formation of  a channel is static in character, and the case in point can be 
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Fig. 5. Oscillograms of  the discharge-current strength (a-c, curve 1) and of 
inductance voltage in the circuit (a, curve 2), of  voltage across the in- 
terelectrode spacing of the lamp (b, curve 2), and of  the pumping light 
pulse (c, curve 2). The scale multiplier along the time axis is 10 ~tsec. 

only the statistic of small numbers, the result of calculating the stored-energy portion released in the plasma at 
the leading edge of the current pulse cannot be predicted, in essence. 

Figure 4 shows a typical oscillogram of the discharge-current strength (curves 1 in Figs. 4 and 5) ob- 
tained in electrophysical measurements of  the parameters of the plasma in a coaxial flashlamp [9-12]. In the 
same experiments, the homogeneity of the plasma and the time dependences of the inductance voltage (curve 
2 in Fig. 5a) and the voltage across the active resistance of the interelectrode spacing (curve 2 in Fig. 5b) were 
determined. From these data, the time behavior of the electrical resistance of the electric-discharge plasma 
(curve 2 in Fig. 4) was calculated, beginning with the moment of completion of the formation of a homogene- 
ous hollow plasma column (approximately within 0.3 Hsec after commutation) and ending with the moment of 
attainment of the maximum current. Within the limits of measurement error (-10%), the plasma resistance 
changes by the hyperbolic law, i.e., = l / x  in Eq. (1) (for clarity, the curve R(t) is extended beyond the maxi- 
mum value of the current strength), the zeros of the discharge current coincide with the same accuracy with 
the zeros of the Bessel function of the first order, and the current strength is opposite in sign to the voltage 
across the capacitor bank. Figure 5c shows, for comparison, the oscillograms of the discharge-current strength 
(curve 1) and of the pumping light pulse (curve 2). The data of  these experiments also indicate that d(x) de- 
pends significantly on the sort and pressure of the working gas in the discharge space of the lamp. For exam- 
ple, for Xe, at a pressure lower than -10 torr, at the leading edge of  the current pulse, beginning with a time 
of >1 ~tsec and up to a time of _<10 psec when the maximum current is attained, the electrical resistance of  the 
plasma remains practically constant (Fig. 4), which coincides with the dependence D(x) - l / x  for the horizontal 
branch of the hyperbola. At higher pressures of  xenon (in the experiments, as high as 100 ton') the plasma 
resistance at the leading edge of the current pulse decreases by an exponential or nearly exponential law. In 
this case, at a pressure of _<10 tort the resistance is practically independent of the working voltage across the 
capacitor bank, and in the range of 10-100 tort it decreases markedly with increase in the working voltage. 
However, in all cases, the quasiperiodic character of the discharge is retained. Moreover, the oscillograms in 
Fig. 5c point to the fact that the leading edges of the pumping and discharge-current pulses are similar. 

The quasiperiodic character of change in the characteristics of  the transient process suggests that in a 
certain bounded region of  change in the circuit parameters, their mean values can be almost constant. This is 
qualitatively evidenced by the calculation data of Fig. 3 and by the results of the direct calculation of the time 
of attainment of the first maximum of the discharge-current strength Xm (Fig. 6a), the maximum value of  the 
discharge-current strength i m (Fig. 6b), and the value of the energy w m (Fig. 6c) released in the load by this 
moment, obtained for the values of the exponent 7 = 1.2 (curve l), ~/= 1.4 (curve 2), 7 = 1.6 (curve 3), T = 
1.8 (curve 4L and ~ = 2.0 (curve 5). It is apparent that time is not among these parameters, because the aver- 
aging over time during the leading edge is meaningless. However, this is possible over other parameters, in 
particular, over the steady-state damping d that is taken as the initial damping in the calculations. On the seg- 
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Fig. 6. Dependence of the time of attainment of  the first maximum of the 
discharge-current strength x m (a), the maximum value of  the discharge- 
current strength im (b), and the energy Wm released in the load during the 
leading edge of the pumping pulse (c) on the initial damping d for an al- 
ternate load: 1) ~/= 1.2; 2) 1.4; 3) 1.6; 4) 1.8; 5) 2.0. 

ment 3 < d, the mean value Xm = 2.23 is realized at ? = 1.6, and 7m = -0.61 is realized on this segment at the 
same value of )' = 1.6. At the same time, the energy released in the load at the leading edge behaves differ- 
ently. It is seen from Fig. 6c that in the range of ~/< 2 the stored-energy portion converted to heat at the lead- 
ing edge is bounded above by the value of Wm = 0.65. This value remains practically constant in the region of 
d > 2. Thus, the realization of  the parameters found at the values of ~/from 1.6 to 2 for d > 3 makes it possible 
not only to attain the optimum conditions for the transient process but also to provide its stability. 

In the results presented, the constant factor in the damping Dc(x) was considered as the initial damping 
d for the case of a steady load. This has been done for convenience of the calculation, since this choice does 
not claange the character of the general solution of Eq. (1). Because of this, in principle, d can be replaced by 
another factor that describes the properties of the medium, in which the electric discharge occurs, for example, 
by the concentration of molecules of the working gas that determines the pressure in the discharge space prior 
to breakdown, since the distinctive properties of the plasma, in particular, the degree of its ideality, the mecha- 
nism of  conduction, and so on, are predominantly dependent on the concentration. The second deciding factor 
that determines the mentioned properties of the plasma is the plasma temperature, which, in the case of  an 
electric discharge, depends predominantly on the density of the electric energy in the discharge space of the 
lamp, i.e., eventually, on the mechanism of conduction of the plasma and on the value of the energy We stored 
in the storage. The second part of  the problem is purely technical in character, while the first part calls for 
additional analysis, since it is determined not only by the electrophysics and physics of the plasma but also, to 
the same extent, by the properties of the active medium of the laser. 

All the necessary calculations were performed with the use of original programs (m-files) in the Matlab 
5.2 mathematical-processing medium of MathWorks Inc. 
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N O T A T I O N  

U0, working voltage of the pumping source; Ucona(t), instantaneous voltage across the capacitor bank; 
Ucond, dimensionless voltage across the capacitor bank; Ce, capacity of the energy storage; Co, capacity of  the 
discharge circuit; Le, inductance of the energy storage; Lc, inductance of the discharge circuit; R c, active resis- 
tance of the discharge circuit; Re, active resistance of the energy storage; Pc, instantaneous power of  heat re- 
lease in the active resistance of the load; Tb, brightness temperature; d, damping in the case of  a permanent 
load; Qc, Q-factor of  the discharge circuit; D(x), instantaneous damping in the case of  a load that changes by 
an exponential law; w c, dimensionless energy of heat release in the active resistance of the load; W e, energy 
stored in the energy storage; win, maximum energy of heat release in the resistive load; x, dimensionless time; 
~,, exponent; Jc(x), dimensionless normalized instantaneous strength of current in the discharge circuit; it(t), in- 
stantaneous strength of  current in the discharge circuit; im, dimensionless normalized maximum current in the 
load at the instant Xm; 7m, mean value of the maximum current in the load at the instant Xm; Xm, mean value 
of the dimensionless time; t, time. Subscripts: c, circuit; e, energy storage; m, maximum; cond, condenser; 0, 
initial conditions. 
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